If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=46
We move all terms to the left:
18x^2-(46)=0
a = 18; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·18·(-46)
Δ = 3312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3312}=\sqrt{144*23}=\sqrt{144}*\sqrt{23}=12\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{23}}{2*18}=\frac{0-12\sqrt{23}}{36} =-\frac{12\sqrt{23}}{36} =-\frac{\sqrt{23}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{23}}{2*18}=\frac{0+12\sqrt{23}}{36} =\frac{12\sqrt{23}}{36} =\frac{\sqrt{23}}{3} $
| 1/4w=w(w-87.5) | | −30=+8x≥ −22 | | 9x-8x=x | | 1.4c+13=3c+48 | | (-4+13x)+(10x)=180 | | 3e+-32=180 | | 8.9=v+7.4 | | (x+65)+(x+125)=180 | | 3(4w=1)=8 | | -9y+14+5y-30=0 | | X+x(.0825)=4065 | | (5x+4)+6x+(x+8)=180 | | 4x=29-7x | | -2p-6-9=25 | | 5x+4)+6x+(x+8)=180 | | 10(s-3)=-98 | | 2.8^x=41 | | t÷6-2=12 | | -x-12(3+5x)-1-2(-19+x)=1009 | | 9k-45-3k=3 | | -x-12(3+5x)-1-2(-19+x=1009 | | -x-12(3+5x-1-2(-19+x)=1009 | | -x-12(3+5x-1-2(-19+x=1009 | | -35=x-4x+10(x+1)-2x-(x+1) | | 3e+-32+e+16=180 | | 2(5x+3)=2(4x-2) | | x-3(7x+4)+3(x-1)=-355 | | 33=9+2n | | 7g-9=75 | | 80=-7b+2b | | -9x+18x^2=0 | | 2x+22+90+4x-16=180 |