If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=144
We move all terms to the left:
18x^2-(144)=0
a = 18; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·18·(-144)
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{2}}{2*18}=\frac{0-72\sqrt{2}}{36} =-\frac{72\sqrt{2}}{36} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{2}}{2*18}=\frac{0+72\sqrt{2}}{36} =\frac{72\sqrt{2}}{36} =2\sqrt{2} $
| 168=56x-56 | | 56x-56=168 | | 15-4(a+3)=19 | | 3f=15-9 | | 85=65+b | | -90+15x=60 | | Y^(6)+y=0 | | 6=-3x/2 | | (9x-25)=94 | | 6=-3x/3 | | 102-2=h | | n-7=6×7 | | –6y=–4−8y | | 4l+l=11-1+5 | | x(x+4)=392^2 | | 6x+5+85=108 | | (1.08)^16=x | | (8a+16)+(6a-60)=180 | | 12+8=a-7 | | -0.137r-5=4. | | 2n–36=14 | | 10-9+c=16 | | 27-23=x | | 3a-15=8a | | n+12=18n | | 3a-14=8a | | 2021-x=1903 | | (2x)(x-2)=(x)x | | (2x)(x-2)=(x)(x) | | (3x-6)(x+2)=(3x-4)(x+1) | | ((2x-5)+(x+1))(x+1)=((2x-8)+(x+2))(x+2) | | (5+x+1)(x+1)=(8+x)(x) |