If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-50=0
a = 18; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·18·(-50)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*18}=\frac{-60}{36} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*18}=\frac{60}{36} =1+2/3 $
| 5a-10=8 | | x=-1x4+21 | | 15-2y=9+y | | x²+5x=36 | | 2/3x-2=14-4/3x | | 5v2+22v+8=0 | | 15-3s=51 | | w-83/5=3 | | 5x^2+16x-75=0 | | 2(x=-50)=54 | | 3g-28=17 | | 2x^2-10x+5/x^2=0 | | 15+8z=47 | | 13x+27=6x+237 | | b/10-1=1 | | -5x-4(-3x+15=76 | | 15x-28=12@ | | 2x/3-10=10 | | 45=6d-9 | | 2x+200/x=0 | | q/9+92=99 | | 3x-4(5x+12)=105 | | 3x+4+8x+-28=108 | | 5x-2x+7x=20 | | 3x-4(5x+12)=15 | | (x+1)/2=25 | | x(24-2x)(18-2x)=250 | | p/2+9=13 | | 3x^2+1/x-5=0 | | 3x^2+1/x-52=0 | | 6p-1=29 | | 4-3h=10 |