If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-3x=0
a = 18; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·18·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*18}=\frac{6}{36} =1/6 $
| 4x(5x+5)=0 | | 6x+90x/7=132 | | 9b-7=6b+21 | | 250=A*2^t/4 | | 2(x-1)+2(4x-5)=3x+2 | | 5k+3÷6=13-(4-k)÷9 | | 8x–21–5x=–15 | | -7+3t-9t=12t-2 | | x-5=360 | | 2x²—=72 | | 3x-10=3x-20 | | 5a+a+80+2a+200=360 | | (8-3t)(3+t)=20 | | 2/x+1-6/7x+7=5 | | 87=2x4 | | 5m/3=24 | | 5*(2x-5)*(3x-6)= | | -2(2t+5)=18 | | 4=5d+11 | | -10(s+2)=76 | | 6(t-4)=12 | | 3(4s+10)=66 | | 7x/3=2x-5 | | 6=3j=3 | | 7x−6=5x+4 | | Y2+9y+20=0 | | 3x²+6x-10=0 | | 5x+10=-50-5xx= | | 4x+13=53-7x | | 2+e=6 | | x2=x-0.25 | | X/6+5=x/3+2 |