If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+9x-20=0
a = 18; b = 9; c = -20;
Δ = b2-4ac
Δ = 92-4·18·(-20)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-39}{2*18}=\frac{-48}{36} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+39}{2*18}=\frac{30}{36} =5/6 $
| 5-4r-6r=-9r-5 | | 2(x-6)=38 | | 4(3x+5)-6x=48 | | 4k=159=2k=153 | | Y=2x^2-x-5=3x+1 | | h+2.1=12.62 | | -20+4+13b=17+10b | | -4s^2+8s=4 | | -6+4m=6m | | 5⋅z=355⋅z=35 | | 15n+5=10n-15 | | 2(x+4)-7=6x-4(-1+x) | | 4x+6-x=2x3 | | v-10=-3v+10 | | 3x-14+8x+7=180 | | 8j+20=4j+7j-10 | | 5(w+8)=100 | | -8-9b=10 | | 2u=5.6 | | 5(w+8$=100 | | 3r+9r=27r | | 6+-7v=-22 | | z+3=18.3 | | 3/2v=-6/5 | | (x−3)2−81=0 | | -4y-2=-12-3y | | -7b=-8-8b | | 7d^2+4d-4=0 | | 2x+18/6=8 | | 3/5+2x=21 | | 16.25=6.5t | | -8p=-2-7p |