If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+27x+4=0
a = 18; b = 27; c = +4;
Δ = b2-4ac
Δ = 272-4·18·4
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-21}{2*18}=\frac{-48}{36} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+21}{2*18}=\frac{-6}{36} =-1/6 $
| 2=r-20 | | c^2-6c+45=0 | | (6x^2+132x+121)=÷9 | | 4u+8=−3u+2 | | c^-6c+45=0 | | x+2/3=3/2 | | 5-9x=-9x+12 | | 5+x+3=14;x=7 | | 3n-3=31 | | x+2/3=11/2 | | .35x+45=108 | | (3x-5)^2=12 | | .35x+45=180 | | 3(4x+8)=-26+2 | | -7(3t+t)=4(2t+6) | | 10x+4-30=8 | | 20000=8(2^t) | | 137+n=155 | | 18=y-3/2 | | 4n–12=12–4n | | 205(400)+(800x)=((x+205)(28.7))-(212636.67) | | -3x^2+16x+3=0 | | x/4=24.4 | | 9x+210=4x+4 | | 205(400)+x(800)=(x+205)(28.7)-(212636.67) | | 24=2y | | 7x^2+x-2=6 | | 2x+5=13-2× | | 2x+8=15+1 | | 42-b=73 | | 8y-27=29 | | 6/f=2.5 |