If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+1=792+2
We move all terms to the left:
18x^2+1-(792+2)=0
We add all the numbers together, and all the variables
18x^2+1-794=0
We add all the numbers together, and all the variables
18x^2-793=0
a = 18; b = 0; c = -793;
Δ = b2-4ac
Δ = 02-4·18·(-793)
Δ = 57096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{57096}=\sqrt{36*1586}=\sqrt{36}*\sqrt{1586}=6\sqrt{1586}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{1586}}{2*18}=\frac{0-6\sqrt{1586}}{36} =-\frac{6\sqrt{1586}}{36} =-\frac{\sqrt{1586}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{1586}}{2*18}=\frac{0+6\sqrt{1586}}{36} =\frac{6\sqrt{1586}}{36} =\frac{\sqrt{1586}}{6} $
| 3^t=18 | | 8c-9=15 | | 8c-9=14 | | 2z+3=5z+10 | | 70-p*5=30 | | 45÷n=9 | | 6x+3x+5+7=5x-2x | | -3(5s-6)-18=-2(9s+10)-2 | | 2x2-16=0 | | -10x+15=2x+75 | | 4.2(1.75a-3.2)=3.9(1.5a+4.6 | | 2x+1+76+104+104=360 | | x+2-4=8 | | 4.8s-7.6=1.25+15.8 | | 2^2y=1/8 | | 5z+3=(2z+6) | | -y+2=-5 | | 5z+3=(2z-6) | | (A-700)x7=1057 | | 9*x+x*9=324 | | (z+2)^3-8=0 | | 2x+2+x+2x-7=180 | | 5(2x+15)=75 | | 4x1+x2-5x3=8 | | 5x+2x-13=22 | | (3^1-x)^2-x=1 | | 7^2x+7^x=0 | | X-3/2=7x+2/4 | | 2x-14=3x-27 | | 7(3x-7)-7(x-2)=-7 | | 6(x+4)=8(x-7) | | (2x-1)(6x+5)²=(2x-1) |