If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+12x+1=0
a = 18; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·18·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{2}}{2*18}=\frac{-12-6\sqrt{2}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{2}}{2*18}=\frac{-12+6\sqrt{2}}{36} $
| 3z-2=(-26) | | 28-6a=10 | | y-13/4=3 | | x=3(3)+9 | | 12x+4-24x=52 | | 6x(23-17)=6x | | 8n=10+14 | | 0.3(n-7)=0.4-0.2(-n-7) | | 2x^-x=3 | | -2a-8=(-4) | | 35/7n=15/28;n= | | 0.04x=0.04x | | 2x*88=2 | | 8y−7=23−2y | | (6+y)(3y-2)=0 | | 2(x−8)+11=2x−5 | | 3=r/9-3 | | -4=k(2) | | -3(x-4)=2x-3 | | 2n^2=50n | | 5x-2+3x=6(3x-2)+5 | | 5-3x=6-4x+3 | | 7x-8+5x-8=88 | | -8(a-4)+3a=2(4a+9)=1 | | 1/2x+1/3=4(5/6x-3) | | X^2+y^2+10y-23=0 | | 5.6/y=0.7 | | 9(c+6)-c=6 | | 9x-(7x+8)=4x-10 | | .47x=376 | | 3w-1.2=1/3 | | Xx4+190=Xx13-8 |