If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x(2x-1)=6(x+2)+3x
We move all terms to the left:
18x(2x-1)-(6(x+2)+3x)=0
We multiply parentheses
36x^2-18x-(6(x+2)+3x)=0
We calculate terms in parentheses: -(6(x+2)+3x), so:We get rid of parentheses
6(x+2)+3x
We add all the numbers together, and all the variables
3x+6(x+2)
We multiply parentheses
3x+6x+12
We add all the numbers together, and all the variables
9x+12
Back to the equation:
-(9x+12)
36x^2-18x-9x-12=0
We add all the numbers together, and all the variables
36x^2-27x-12=0
a = 36; b = -27; c = -12;
Δ = b2-4ac
Δ = -272-4·36·(-12)
Δ = 2457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2457}=\sqrt{9*273}=\sqrt{9}*\sqrt{273}=3\sqrt{273}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{273}}{2*36}=\frac{27-3\sqrt{273}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{273}}{2*36}=\frac{27+3\sqrt{273}}{72} $
| 4.5x-5.45=5.8 | | w^2-10=10 | | 3(a+5)+19=-2 | | (-3)+9b=96 | | -15t^2+44t-24=0 | | 4-n/2=0 | | 13/5=5/y | | 12/5=5/y | | 3(6x+1)=111 | | 13/5.0416=5/y | | 35=5(n+2$ | | p÷11+(-8)=(-6) | | 10m+(-1)=189 | | x2–4x+8=0 | | -13=(v÷10)-12 | | 12-v÷10=-13 | | -13d-19=-58 | | 59+x+(2x-17)=360 | | 64-12/4*3=x | | -23=4y+3*(y-3) | | 3n-11=28 | | 3/x-2/3x=-7/3^2-6x | | (w-6)^2-50=0 | | 4(2x+4)=9(3x-5) | | 5x+36=70 | | 5x+7-4x=7 | | 5/12=480/x | | -4a^2+2a+3=0 | | 6x+8=x+18 | | -8(u+4)=2u-22 | | (2u+5)(2-u)=0 | | -9v-36=-7(v+8) |