If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18p^2+46p+20=0
a = 18; b = 46; c = +20;
Δ = b2-4ac
Δ = 462-4·18·20
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-26}{2*18}=\frac{-72}{36} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+26}{2*18}=\frac{-20}{36} =-5/9 $
| 8.3x-15.6=17.6 | | -(2+6b)+2b=-8-5b | | j2-21j+98=0 | | 9n=-10+4n | | 1/8=17/20/x | | 2.1x-1.6=6.8 | | 3(5+2)-s=38 | | -14.7p-17.49=-13.6p | | -17x-11=-96 | | -1−8z=-7z−7 | | 3(x-4)=x/5-7 | | -11(-12+n)=-22 | | 1−7d=–6d | | -6(3x+10)=-114 | | 1−7d=-6d | | (7x+4)=(8x-9) | | x*x+8x-7=0 | | 32-2x=-5(x+2)-4 | | Y=-20x+3 | | –3b+9=–4b | | 12=12y+14× | | 2x-2-2x=90 | | 15y=3y+8y | | -4u−5=-6u+5 | | -3+0.50c=12 | | 7m=-15+6m | | 12r-3-2r=13r+27 | | -9k+6=-7k | | -1(3y+2)=-14 | | 4n+n+3=9n-17 | | 43-w=w+9 | | 6x−2=19+3x |