If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18n^2+15n-33=0
a = 18; b = 15; c = -33;
Δ = b2-4ac
Δ = 152-4·18·(-33)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-51}{2*18}=\frac{-66}{36} =-1+5/6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+51}{2*18}=\frac{36}{36} =1 $
| 27+2b-4=5b-2+2b | | 2(5a+1)=4(3a-7) | | -3y+53=7y-55 | | 8g2-58g+99=0 | | 24x=6x^2 | | R+6r-5r+1=13 | | 14a-13a+1=19 | | 19x-17=18x+3 | | 11x-2x+68=11x+24 | | -10+4n=-14 | | 6y-5/3=-7/5y-1/5 | | -9x^2+20x+3=0 | | 35+0.45y=40+0.25y | | 1/(c+4)=7/63 | | 3x11=7x−53x−8 | | 3y-2.6=9.6 | | 15/5+3n=9/n | | 26x+18=10x | | 2x-5(x-4)=-2+4x-34 | | 5b-4=b-16 | | 3x-60=2x+96 | | a=41(0.5)^2/5.7 | | 8+3c=10c-6 | | 35r/9=70 | | –5x+(–50)=–40. | | 2x-15=300 | | 10^x=700 | | 11x=7/12 | | 10=3x=2x+2=5x | | 3x^2-12x-55=0 | | 3x^2-12x-45=0 | | 3x^2-12x-65=0 |