If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18b^2-54b=40
We move all terms to the left:
18b^2-54b-(40)=0
a = 18; b = -54; c = -40;
Δ = b2-4ac
Δ = -542-4·18·(-40)
Δ = 5796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5796}=\sqrt{36*161}=\sqrt{36}*\sqrt{161}=6\sqrt{161}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-6\sqrt{161}}{2*18}=\frac{54-6\sqrt{161}}{36} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+6\sqrt{161}}{2*18}=\frac{54+6\sqrt{161}}{36} $
| -40=4a | | H+h(h-8)+2(h-8)=72 | | 4(2x+1)-(6x+1)+3=36 | | 4(2x+1)-(x+1)+3=36 | | a2=-6 | | v-7.96=5.43 | | 4(n^2-1n-42)=0 | | (2/3)x-5=(1/3)x-3 | | 2x+5=26-(3x-4) | | X+6x+5=2x+35 | | 6x-8=22{x5} | | 4^2x^+3=1 | | 2+3x+x+14=180 | | (x-5)+3=12 | | (x+10)+(88)=180 | | 25.6=3x | | 2x+3x+18=34+x | | h/3-5=-10 | | 3(y+3)-y-1=0 | | (3x-5)•2=5x+5 | | 2h+6=4 | | −15=2x+1 | | Y=(6y)^-2 | | f-10=29 | | -14+8v=-3(v+1) | | 6=2a+10 | | 6a=2a10 | | -6(p+6)=-38-5p | | -5(7n+7)=19-8n | | n+4/2-3=16 | | -(5-(a+1))=a-(5-(2a-3)) | | 2x2-15=0 |