18=2(3k+1)k

Simple and best practice solution for 18=2(3k+1)k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18=2(3k+1)k equation:


Simplifying
18 = 2(3k + 1) * k

Reorder the terms:
18 = 2(1 + 3k) * k

Reorder the terms for easier multiplication:
18 = 2k(1 + 3k)
18 = (1 * 2k + 3k * 2k)
18 = (2k + 6k2)

Solving
18 = 2k + 6k2

Solving for variable 'k'.

Reorder the terms:
18 + -2k + -6k2 = 2k + -2k + 6k2 + -6k2

Combine like terms: 2k + -2k = 0
18 + -2k + -6k2 = 0 + 6k2 + -6k2
18 + -2k + -6k2 = 6k2 + -6k2

Combine like terms: 6k2 + -6k2 = 0
18 + -2k + -6k2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(9 + -1k + -3k2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(9 + -1k + -3k2)' equal to zero and attempt to solve: Simplifying 9 + -1k + -3k2 = 0 Solving 9 + -1k + -3k2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -3 + 0.3333333333k + k2 = 0 Move the constant term to the right: Add '3' to each side of the equation. -3 + 0.3333333333k + 3 + k2 = 0 + 3 Reorder the terms: -3 + 3 + 0.3333333333k + k2 = 0 + 3 Combine like terms: -3 + 3 = 0 0 + 0.3333333333k + k2 = 0 + 3 0.3333333333k + k2 = 0 + 3 Combine like terms: 0 + 3 = 3 0.3333333333k + k2 = 3 The k term is 0.3333333333k. Take half its coefficient (0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. 0.3333333333k + 0.02777777779 + k2 = 3 + 0.02777777779 Reorder the terms: 0.02777777779 + 0.3333333333k + k2 = 3 + 0.02777777779 Combine like terms: 3 + 0.02777777779 = 3.02777777779 0.02777777779 + 0.3333333333k + k2 = 3.02777777779 Factor a perfect square on the left side: (k + 0.1666666667)(k + 0.1666666667) = 3.02777777779 Calculate the square root of the right side: 1.740051085 Break this problem into two subproblems by setting (k + 0.1666666667) equal to 1.740051085 and -1.740051085.

Subproblem 1

k + 0.1666666667 = 1.740051085 Simplifying k + 0.1666666667 = 1.740051085 Reorder the terms: 0.1666666667 + k = 1.740051085 Solving 0.1666666667 + k = 1.740051085 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667 + k = 1.740051085 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + k = 1.740051085 + -0.1666666667 k = 1.740051085 + -0.1666666667 Combine like terms: 1.740051085 + -0.1666666667 = 1.5733844183 k = 1.5733844183 Simplifying k = 1.5733844183

Subproblem 2

k + 0.1666666667 = -1.740051085 Simplifying k + 0.1666666667 = -1.740051085 Reorder the terms: 0.1666666667 + k = -1.740051085 Solving 0.1666666667 + k = -1.740051085 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667 + k = -1.740051085 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + k = -1.740051085 + -0.1666666667 k = -1.740051085 + -0.1666666667 Combine like terms: -1.740051085 + -0.1666666667 = -1.9067177517 k = -1.9067177517 Simplifying k = -1.9067177517

Solution

The solution to the problem is based on the solutions from the subproblems. k = {1.5733844183, -1.9067177517}

Solution

k = {1.5733844183, -1.9067177517}

See similar equations:

| -4(2x-3)=84 | | 5v+7=37 | | -8p+20=-4(3p+2) | | -4(6-2x)=72 | | Y-1.25=o | | 8x-5=749392 | | y=-50x+500 | | 1-2v=10 | | x/5+(x-1)/3=1/5 | | 15+16x=4(4x+4) | | -2(8y-4)=-15.5 | | 5b+6-6b+9=7 | | -3(4x+3)=51 | | 110+2x=20 | | 5.2n=3.7 | | 3x^4+81x=0 | | y=x^3-x^2+4 | | 5+r=9 | | 5y^2+12y+36=0 | | 2x^2-13x=5 | | 6x+17+46=10x+15 | | -a^3-8a^2+4a-32=0 | | 86=-5x+11 | | 11x+6x-31=6x+2x+50 | | x/29=-5 | | (a^2-6a+2)(a^2+8a-2)= | | 3x-12x=36 | | -6(x+2)=72 | | a^3+8a^2-4a+32=0 | | 2b-8-b+7= | | 16-3y+4y=28 | | Y=3(2x+1) |

Equations solver categories