If it's not what You are looking for type in the equation solver your own equation and let us solve it.
184x^2+795x=1350
We move all terms to the left:
184x^2+795x-(1350)=0
a = 184; b = 795; c = -1350;
Δ = b2-4ac
Δ = 7952-4·184·(-1350)
Δ = 1625625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1625625}=1275$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(795)-1275}{2*184}=\frac{-2070}{368} =-5+5/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(795)+1275}{2*184}=\frac{480}{368} =1+7/23 $
| 9(z+1)-2(z-2)=3(z-1)+3(z-4) | | p|7=83 | | 36=-3(22-b)+3(b-4) | | -1-3x+6=-8-5x | | -5k+3=11-k | | 209-y=260 | | 4(3y-5=14 | | 259=-v+163 | | 100x+20=40 | | 4(5x-5)=23 | | 5(15-x)=7(9x-1) | | 18x2―6x=0 | | h8-10=62 | | 7x-(2x+1)=14 | | h=8-10= | | 5+4n=8n+13 | | 43=31-2(x-3) | | 9x+7=10x-6 | | 2p+6=8p-12 | | 6n-8=-5n+7n | | 6z−3−8z=13 | | 7x+10=1/2x+1 | | -9+13=6+h | | 1-x=0.009 | | -18=t+59 | | 2x-9x+63=2x+27 | | 2n+1/2=n+2/4 | | 0.08(y-5)+0.02y=0.18y-0.7 | | r-4=5-11-8 | | 4x×5=17 | | 2x+(1x+15)=180 | | -5+13=5b-4-4b |