180n-360=2880/8n

Simple and best practice solution for 180n-360=2880/8n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180n-360=2880/8n equation:



180n-360=2880/8n
We move all terms to the left:
180n-360-(2880/8n)=0
Domain of the equation: 8n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
180n-(+2880/8n)-360=0
We get rid of parentheses
180n-2880/8n-360=0
We multiply all the terms by the denominator
180n*8n-360*8n-2880=0
Wy multiply elements
1440n^2-2880n-2880=0
a = 1440; b = -2880; c = -2880;
Δ = b2-4ac
Δ = -28802-4·1440·(-2880)
Δ = 24883200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24883200}=\sqrt{8294400*3}=\sqrt{8294400}*\sqrt{3}=2880\sqrt{3}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2880)-2880\sqrt{3}}{2*1440}=\frac{2880-2880\sqrt{3}}{2880} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2880)+2880\sqrt{3}}{2*1440}=\frac{2880+2880\sqrt{3}}{2880} $

See similar equations:

| X³-4=0x³=4 | | 9(p+7)=81 | | -2(x-5)+4x=-3+4x+9 | | 4.7-2.83x=5.17x11.3 | | 13/1x+14=13 | | 3d+7=3(d-30 | | b/14-4b/17=27/17 | | 1=0.3x-0.06x-5 | | z/1=12 | | 1/3x*150000=0 | | 4=r/3+1 | | k3=6 | | 1/2(4x+30)=5x+45 | | a-1=4a-3 | | 6-3x=-4x+18 | | 2(4x+2)+2(6x=44 | | 0=-1+a/6 | | (15+2p)/(4)=6 | | 5.25x=42 | | 1/4(12x+16)=7x-14 | | v/1=14 | | 9=-9-9x | | 7.4x-21=45.6 | | m+3=-10 | | 4(4+4x)=96 | | v/2=14 | | -25=13y+157 | | 3x+18-6x=0 | | 2/3(6x-18)=-5x+6+2x | | 26.26=5g+3.86 | | 48=7p-8 | | x+13/3=6 |

Equations solver categories