180=x(2)+6

Simple and best practice solution for 180=x(2)+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=x(2)+6 equation:



180=x(2)+6
We move all terms to the left:
180-(x(2)+6)=0
We add all the numbers together, and all the variables
-(+x^2+6)+180=0
We get rid of parentheses
-x^2-6+180=0
We add all the numbers together, and all the variables
-1x^2+174=0
a = -1; b = 0; c = +174;
Δ = b2-4ac
Δ = 02-4·(-1)·174
Δ = 696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{696}=\sqrt{4*174}=\sqrt{4}*\sqrt{174}=2\sqrt{174}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{174}}{2*-1}=\frac{0-2\sqrt{174}}{-2} =-\frac{2\sqrt{174}}{-2} =-\frac{\sqrt{174}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{174}}{2*-1}=\frac{0+2\sqrt{174}}{-2} =\frac{2\sqrt{174}}{-2} =\frac{\sqrt{174}}{-1} $

See similar equations:

| 1−b=5 | | 1−b=-5 | | P(n)/2n^2-5n+2=0 | | 2=-2(f-6) | | 33=-5+3(v-4) | | k+4/3=-16 | | 6x^2+31-8=0 | | 2=-2(f−6) | | 2g+2g=12 | | y=2000+-2.5y | | 2=p+7/1 | | 2x+110x+272=26 | | 6x^2-900/x=0 | | 6y+2(y-3)=6(y=1)-3 | | 7−d=5 | | 6-q=7 | | -7(2a-3)=-18 | | Y=0.67x+(-4) | | 6y=2(y-3)=6(y=1)-3 | | 21-4x=15 | | 2r+8/6=5r-1/14 | | 6−q=7 | | 335=115+80h | | -5g+6g+-17=-13 | | 2(f+4)=-6 | | 3x-7=9,5 | | 3k-7=3(k+1) | | 6•3.14=3.14x | | 30=18-2x | | −2(5x+4)−3x+3=  −18 | | 24x-12=34× | | 14/5+1/8t=3 |

Equations solver categories