180=65+(15x-4)(4x+5)

Simple and best practice solution for 180=65+(15x-4)(4x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=65+(15x-4)(4x+5) equation:



180=65+(15x-4)(4x+5)
We move all terms to the left:
180-(65+(15x-4)(4x+5))=0
We multiply parentheses ..
-(65+(+60x^2+75x-16x-20))+180=0
We calculate terms in parentheses: -(65+(+60x^2+75x-16x-20)), so:
65+(+60x^2+75x-16x-20)
determiningTheFunctionDomain (+60x^2+75x-16x-20)+65
We get rid of parentheses
60x^2+75x-16x-20+65
We add all the numbers together, and all the variables
60x^2+59x+45
Back to the equation:
-(60x^2+59x+45)
We get rid of parentheses
-60x^2-59x-45+180=0
We add all the numbers together, and all the variables
-60x^2-59x+135=0
a = -60; b = -59; c = +135;
Δ = b2-4ac
Δ = -592-4·(-60)·135
Δ = 35881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-\sqrt{35881}}{2*-60}=\frac{59-\sqrt{35881}}{-120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+\sqrt{35881}}{2*-60}=\frac{59+\sqrt{35881}}{-120} $

See similar equations:

| 24=10+a | | (3x+7)=5+6x | | 5x-9=3×+4 | | 957=y+209 | | 12s=s+22 | | 285=15r | | -11+k=-7 | | -3+15=7x+3 | | -9q+9(8q+8)=-6(-10q+1) | | 69=3(7x+9) | | 13=(5x+310) | | 6=-4/9c | | 5x+16=3x+7 | | -0.2(3x-8)=0.1(2-3x) | | 1025=(q*9)+17 | | 6v=v+1 | | k+15=31 | | 8n−11=6n+7​ | | 3-6s-10=9-4s | | 8x^2-120x-432=0 | | 3/10(x)=3 | | 10k=-3(-2k+3)+k | | 3x+2-(-5x)=4x-2 | | -100=0.5(9.8)t^2 | | 5x+3+2x-1=107 | | 8x-160=180 | | 1,025=(q*9)+17 | | 15+y=-43 | | 3/2x+15=19 | | -6(g-7)+8=-4-5g+5g | | 3x+6=x+ | | 15q=225 |

Equations solver categories