180=3y(5y-22)

Simple and best practice solution for 180=3y(5y-22) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=3y(5y-22) equation:



180=3y(5y-22)
We move all terms to the left:
180-(3y(5y-22))=0
We calculate terms in parentheses: -(3y(5y-22)), so:
3y(5y-22)
We multiply parentheses
15y^2-66y
Back to the equation:
-(15y^2-66y)
We get rid of parentheses
-15y^2+66y+180=0
a = -15; b = 66; c = +180;
Δ = b2-4ac
Δ = 662-4·(-15)·180
Δ = 15156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15156}=\sqrt{36*421}=\sqrt{36}*\sqrt{421}=6\sqrt{421}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-6\sqrt{421}}{2*-15}=\frac{-66-6\sqrt{421}}{-30} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+6\sqrt{421}}{2*-15}=\frac{-66+6\sqrt{421}}{-30} $

See similar equations:

| 2x+5=3x+7-5 | | 28-w=66 | | 3y=1/2(5y-22) | | 180=5y-22 | | (x+1)(x-1)((x^2)+7x)(x-4)-2-2x=0 | | 5x–18=6x–1 | | (x+1)(x-1)(x-2)-((x^2)+7x)(x-4)-2-2x=0 | | 4(x-1)-x=3(x+5)-114x-x=3x+15-113x-4=3x+4 | | (x+1)(x-1)(x-2)-(((x)^2)+7x)(x-4)-2-2x=0 | | 50=3.75x+41.5 | | 5y+3y=13 | | (x+1)(x-1)(x^2+7x)(x-4)-2-2x=0 | | 12+1=3(4x+1)-2 | | 9a=+99 | | x/10+1/5=3/20 | | x+2=5x+26-2 | | 10(x1/2)=3x+5+7x | | 5(x-9)=30-15 | | 4y^2+15y=13y-6 | | 6/x+2/(2x)=8/x+1/3 | | 7x-48+3x=180 | | 54(1x+-2)=210 | | 2x-15+2x-6=15 | | 3z^2+7z=5z-7 | | 7x-5+4x+25=180 | | n+37=79 | | 0.35^x=0.02 | | 9+3(x+1)=6x | | c÷4-5=4 | | 3(x+5)+2x+12=32 | | k+3.5=79 | | 4x-5=2x-5+12 |

Equations solver categories