180=3x*(2x+5)+(x-5)

Simple and best practice solution for 180=3x*(2x+5)+(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=3x*(2x+5)+(x-5) equation:



180=3x*(2x+5)+(x-5)
We move all terms to the left:
180-(3x*(2x+5)+(x-5))=0
We calculate terms in parentheses: -(3x*(2x+5)+(x-5)), so:
3x*(2x+5)+(x-5)
We multiply parentheses
6x^2+15x+(x-5)
We get rid of parentheses
6x^2+15x+x-5
We add all the numbers together, and all the variables
6x^2+16x-5
Back to the equation:
-(6x^2+16x-5)
We get rid of parentheses
-6x^2-16x+5+180=0
We add all the numbers together, and all the variables
-6x^2-16x+185=0
a = -6; b = -16; c = +185;
Δ = b2-4ac
Δ = -162-4·(-6)·185
Δ = 4696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4696}=\sqrt{4*1174}=\sqrt{4}*\sqrt{1174}=2\sqrt{1174}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{1174}}{2*-6}=\frac{16-2\sqrt{1174}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{1174}}{2*-6}=\frac{16+2\sqrt{1174}}{-12} $

See similar equations:

| 7-n-3n=7 | | 10=24+7x | | (35-f)2=48 | | X=50+9x-2 | | 8.88+1.3s=13.7s-17.72-14.4s | | =y/(-3) | | 1/40=30/x | | 2x+4=2x7 | | 4x^2-6=394 | | -15=y/(-3) | | 7+r/2=11 | | 58=3.14*r^2 | | (x+6)+(2x-12)=180 | | 5/2x-3=5 | | -24=4x+(-8) | | 6x+12=-2x-20 | | 13.3m=12.8m-4.4 | | 7x+6=6(3x-9)+x= | | 6x+9.56=4x+13 | | 9=v5* | | -9.7c-0.19=-8.6c+0.830.9c | | 22=7u–6 | | 4-5x=3x+8 | | y+-25=18 | | 57=k+29 | | Y=100x+43 | | X+2x+3x=-24 | | 14.66+0.09x=15.41-0.12x | | 7y+2y-9y=y | | 55(5x-25)=180 | | (5x-25)=55 | | 3/4x^2=-12 |

Equations solver categories