180=16n(10-n)

Simple and best practice solution for 180=16n(10-n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=16n(10-n) equation:



180=16n(10-n)
We move all terms to the left:
180-(16n(10-n))=0
We add all the numbers together, and all the variables
-(16n(-1n+10))+180=0
We calculate terms in parentheses: -(16n(-1n+10)), so:
16n(-1n+10)
We multiply parentheses
-16n^2+160n
Back to the equation:
-(-16n^2+160n)
We get rid of parentheses
16n^2-160n+180=0
a = 16; b = -160; c = +180;
Δ = b2-4ac
Δ = -1602-4·16·180
Δ = 14080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14080}=\sqrt{256*55}=\sqrt{256}*\sqrt{55}=16\sqrt{55}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-16\sqrt{55}}{2*16}=\frac{160-16\sqrt{55}}{32} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+16\sqrt{55}}{2*16}=\frac{160+16\sqrt{55}}{32} $

See similar equations:

| -7(1-6x)=38-3x | | -13=8+y/3 | | 2f=2.8 | | 16n^2-160n+180=0 | | -5(x+1)=2x+8(-2x-4) | | 86+2x=206 | | 49+5=3(6x-2x) | | 2=2q-6 | | 8t^2+11t-164=0 | | y3(y-4)=15 | | 8(t+3)-7(t+2)=11 | | 4x+7=53-6x | | 8n+5(2n-3)=21 | | |3(-2)-2|+2(-3)=x | | (b-16)/4=16 | | |3(-2)-2|+2(-3)=n | | 2(x+4)-3=-4 | | -9=r2− 12 | | -8x-11=x-(x+3) | | 4c-19+2c=3c+14 | | w/3+2.1=27 | | 3x=28-5x | | 44=-2x=14 | | 189=-5x+6(5-8x) | | 4=-(v-3)+5(-4-4v) | | M=-3(m-3)+2(3m+1)=15-8 | | 2x+5-3x=2+6x-19 | | -30x+1=-44 | | -11.9d-3.31=-17.17-2d | | 1=-5n+1 | | 9x-2(4x+6)=-7 | | -4x+2-2x+6=-2x+10 |

Equations solver categories