180=(8x-41)(9x+17)

Simple and best practice solution for 180=(8x-41)(9x+17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(8x-41)(9x+17) equation:



180=(8x-41)(9x+17)
We move all terms to the left:
180-((8x-41)(9x+17))=0
We multiply parentheses ..
-((+72x^2+136x-369x-697))+180=0
We calculate terms in parentheses: -((+72x^2+136x-369x-697)), so:
(+72x^2+136x-369x-697)
We get rid of parentheses
72x^2+136x-369x-697
We add all the numbers together, and all the variables
72x^2-233x-697
Back to the equation:
-(72x^2-233x-697)
We get rid of parentheses
-72x^2+233x+697+180=0
We add all the numbers together, and all the variables
-72x^2+233x+877=0
a = -72; b = 233; c = +877;
Δ = b2-4ac
Δ = 2332-4·(-72)·877
Δ = 306865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(233)-\sqrt{306865}}{2*-72}=\frac{-233-\sqrt{306865}}{-144} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(233)+\sqrt{306865}}{2*-72}=\frac{-233+\sqrt{306865}}{-144} $

See similar equations:

| 10-2(2x-4)+3x=16 | | -3j+3=-6j | | -9y+7=-24y-4 | | -7w=-6w+6 | | 18+4n=2n+60 | | -29=6x+13 | | 6x+14=6x-3 | | t=2t-3 | | 180-(8x-41)=(9x+17) | | -4c=9-5c | | 10x+58=-72 | | 10+-3(m+-2=8 | | 6t-2t=8 | | 5.4y+1=-5(y-3) | | 11y+37=15y-11 | | 120t-16t2=0 | | 52+11x=129 | | 2(x=7)-34=4x-11x+4(x-1) | | 22-3x=52 | | 13q+5=2q-6 | | 6(m-2)=12(1) | | 2x-5(x-2)=-4+2x-6 | | x^2-4x=213 | | 2/3b+4/5=1/6b+23/10 | | -5(2-x)+2x=11 | | 1/4x+10=1/4x+54 | | 29=-7x-37 | | 5n=12+18= | | 1500+8t=12= | | 1/4d-2/5=3/4d+11 | | 5x-4+6x=106 | | 4+2(x-7)=6 |

Equations solver categories