180=(6x-1)(5x+17)

Simple and best practice solution for 180=(6x-1)(5x+17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(6x-1)(5x+17) equation:



180=(6x-1)(5x+17)
We move all terms to the left:
180-((6x-1)(5x+17))=0
We multiply parentheses ..
-((+30x^2+102x-5x-17))+180=0
We calculate terms in parentheses: -((+30x^2+102x-5x-17)), so:
(+30x^2+102x-5x-17)
We get rid of parentheses
30x^2+102x-5x-17
We add all the numbers together, and all the variables
30x^2+97x-17
Back to the equation:
-(30x^2+97x-17)
We get rid of parentheses
-30x^2-97x+17+180=0
We add all the numbers together, and all the variables
-30x^2-97x+197=0
a = -30; b = -97; c = +197;
Δ = b2-4ac
Δ = -972-4·(-30)·197
Δ = 33049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-97)-\sqrt{33049}}{2*-30}=\frac{97-\sqrt{33049}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-97)+\sqrt{33049}}{2*-30}=\frac{97+\sqrt{33049}}{-60} $

See similar equations:

| -86=-2-7(-4-4a) | | 180=(6x-1)(5x+17)+120 | | (1.5x+6)x3=9 | | -9y-21=-5(y+9) | | 4n+12=13 | | 5-3(-5-4p)=92 | | 5(2x+3=96 | | 8x-3=-35 | | -333=7(-5-2n) | | 7x+1=-76 | | 5h-4h=h | | 6(5x-6)+2=14 | | 44=k+7 | | 12-2p=4 | | 4-3x=40 | | .2m-5=17 | | X^2~4x~45=0 | | 2/x=3/24 | | (x*√2)=24 | | 7x+6=-50 | | 180=(6x-1) | | 171=7+4(-1+7v) | | -26=3u+7(u-8) | | 50=10x+20 | | 9x-5+10x=180 | | 9x-7=-7 | | -52=-5y-8y | | 34=6x+10 | | 4(x~7)=0.3(x+2)+2.11 | | –35c=+722 | | -11x-3=4x+39 | | 11+3x=3(x+2) |

Equations solver categories