180=(6x+4)(8x-6)

Simple and best practice solution for 180=(6x+4)(8x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(6x+4)(8x-6) equation:



180=(6x+4)(8x-6)
We move all terms to the left:
180-((6x+4)(8x-6))=0
We multiply parentheses ..
-((+48x^2-36x+32x-24))+180=0
We calculate terms in parentheses: -((+48x^2-36x+32x-24)), so:
(+48x^2-36x+32x-24)
We get rid of parentheses
48x^2-36x+32x-24
We add all the numbers together, and all the variables
48x^2-4x-24
Back to the equation:
-(48x^2-4x-24)
We get rid of parentheses
-48x^2+4x+24+180=0
We add all the numbers together, and all the variables
-48x^2+4x+204=0
a = -48; b = 4; c = +204;
Δ = b2-4ac
Δ = 42-4·(-48)·204
Δ = 39184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39184}=\sqrt{16*2449}=\sqrt{16}*\sqrt{2449}=4\sqrt{2449}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2449}}{2*-48}=\frac{-4-4\sqrt{2449}}{-96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2449}}{2*-48}=\frac{-4+4\sqrt{2449}}{-96} $

See similar equations:

| Y=5x^-5x-30 | | 3n+1=128 | | 4(x-5)-5x=7 | | 32x+40=136 | | 5.6g+2=3.6g+6 | | 32=-8(2x-4) | | 2x-10/3=8 | | (4x^2-3x-9)+(-9x+10)=0 | | 425.000+30x=30x | | (1/2(x-50))=(1/3(x+5)) | | -4x-(-3-2x)=-3(2x-2) | | 10v=54+4 | | 3u-2=9 | | -x+201=37 | | w/2+14=36 | | 17x+4=19x+2 | | 10x-35+2x^+22x+12=180 | | x/x+4=5/17 | | 4+4w=8 | | 3n+8=8-3n | | 0.3x-0.09=-0.08x | | 96.2+2.3x=98.5 | | 36*3.14=3.14*r^2 | | 0.12(y-9)+0.02y=0.04y-0.5 | | H(t)=-16t^2+59 | | Y=2x^2+6x+12 | | 83z=4.1z+10.5 | | 2x+10=5x40 | | 30=14+0.4x | | 3x^2-7.0x+0.4375=0 | | x^2+72=-15x | | (9x+2+133)=180 |

Equations solver categories