180=(3x+5)(2x-25)

Simple and best practice solution for 180=(3x+5)(2x-25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(3x+5)(2x-25) equation:



180=(3x+5)(2x-25)
We move all terms to the left:
180-((3x+5)(2x-25))=0
We multiply parentheses ..
-((+6x^2-75x+10x-125))+180=0
We calculate terms in parentheses: -((+6x^2-75x+10x-125)), so:
(+6x^2-75x+10x-125)
We get rid of parentheses
6x^2-75x+10x-125
We add all the numbers together, and all the variables
6x^2-65x-125
Back to the equation:
-(6x^2-65x-125)
We get rid of parentheses
-6x^2+65x+125+180=0
We add all the numbers together, and all the variables
-6x^2+65x+305=0
a = -6; b = 65; c = +305;
Δ = b2-4ac
Δ = 652-4·(-6)·305
Δ = 11545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-\sqrt{11545}}{2*-6}=\frac{-65-\sqrt{11545}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+\sqrt{11545}}{2*-6}=\frac{-65+\sqrt{11545}}{-12} $

See similar equations:

| -8z−17=-1−7z−10 | | 12t=-12+11t | | ⅔x+15=17 | | Xx.02=1500 | | -7+m/3=14 | | k−19=17−6k+20 | | 4x=13x-14 | | 240+y=240 | | v+19=15+2v | | x3+x2-12x=0 | | 2f+1=f+9 | | 16+2w=4w | | P-4/7=p+4 | | 3+.18x=31.80 | | 2×90+3y=180 | | -19+6a=2(4a-3) | | 2(x+30)+x=180 | | 4(t+7)=12+t | | 17+2x=61 | | 7(p÷3)=14p+7 | | 6x+3=2x-3+10x | | (x/7)+(-59)=-41 | | 2=10-4y;3 | | -5q+2=-3q+18 | | 25+24=13x | | 12=-2(x-1) | | 4(x-2)=-5(x+6) | | 5+4(t+3)=17 | | 6q+-13q+-9=-2 | | 16x÷2=-10 | | 5(x-3)=16x+2x-2 | | 5(x-3)=-6x+2x-2 |

Equations solver categories