180-x=1/2x+9

Simple and best practice solution for 180-x=1/2x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180-x=1/2x+9 equation:



180-x=1/2x+9
We move all terms to the left:
180-x-(1/2x+9)=0
Domain of the equation: 2x+9)!=0
x∈R
We add all the numbers together, and all the variables
-1x-(1/2x+9)+180=0
We get rid of parentheses
-1x-1/2x-9+180=0
We multiply all the terms by the denominator
-1x*2x-9*2x+180*2x-1=0
Wy multiply elements
-2x^2-18x+360x-1=0
We add all the numbers together, and all the variables
-2x^2+342x-1=0
a = -2; b = 342; c = -1;
Δ = b2-4ac
Δ = 3422-4·(-2)·(-1)
Δ = 116956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116956}=\sqrt{4*29239}=\sqrt{4}*\sqrt{29239}=2\sqrt{29239}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(342)-2\sqrt{29239}}{2*-2}=\frac{-342-2\sqrt{29239}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(342)+2\sqrt{29239}}{2*-2}=\frac{-342+2\sqrt{29239}}{-4} $

See similar equations:

| 10+7z=-9+7z | | 3x/5=18-3 | | 96=s=48 | | 8=3f-10 | | 4s-2=2 | | 6x-2x+6=5(x-3) | | 30+x=-38 | | 3*30-2x10=70 | | 3x-2*10=70 | | 60y=-360 | | 2(8x+3=54 | | 2y+35=105 | | 24=-(x*x)+10x | | 5=3.142h | | x*x+10x=24 | | 5=3.14=2h | | -3=2m+9 | | 5y−4=y+6 | | 3x(x-2)=5x+8 | | x/8=9/13 | | 12v+6=18 | | 5q+18=18 | | 7–3x=–5 | | (3-7w-3w^2)^6=512 | | 2/4-4x+7/2=-9x+5/6 | | 3(v+3)=12 | | 7+7y=2y–8 | | -4a+3.6=7.8 | | 7+7x=2x–8 | | y=-16+32-17 | | X^3+8x+60=(x | | Y-45=2x |

Equations solver categories