180-0,5x=1/3x

Simple and best practice solution for 180-0,5x=1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180-0,5x=1/3x equation:



180-0.5x=1/3x
We move all terms to the left:
180-0.5x-(1/3x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-0.5x-(+1/3x)+180=0
We get rid of parentheses
-0.5x-1/3x+180=0
We multiply all the terms by the denominator
-(0.5x)*3x+180*3x-1=0
We add all the numbers together, and all the variables
-(+0.5x)*3x+180*3x-1=0
We multiply parentheses
-0x^2+180*3x-1=0
Wy multiply elements
-0x^2+540x-1=0
We add all the numbers together, and all the variables
-1x^2+540x-1=0
a = -1; b = 540; c = -1;
Δ = b2-4ac
Δ = 5402-4·(-1)·(-1)
Δ = 291596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291596}=\sqrt{4*72899}=\sqrt{4}*\sqrt{72899}=2\sqrt{72899}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(540)-2\sqrt{72899}}{2*-1}=\frac{-540-2\sqrt{72899}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(540)+2\sqrt{72899}}{2*-1}=\frac{-540+2\sqrt{72899}}{-2} $

See similar equations:

| 18z-11z=7 | | 8c-5=4.3c-7.75 | | 5x+32=-3x= | | 8y-5(2y+3=2 | | -3(x+7)=3x=-8 | | 2x=180+442x=224x=112 | | -61=8-0.33333333(12w+42)-w | | m-97=-85 | | 2(x+3)+6=70 | | -2(w-2)=9w-29 | | g+104=144 | | 2x=180+44 | | (x/2)*8=4 | | 3.6+a=4.15 | | 21=k-2 | | 2k=–66 | | 65=b-20 | | 4+x=4.5 | | h-34=40 | | c+23=72 | | -5u+2(u+5)=37 | | k-8=40 | | k+1=-13 | | 5n²+3n+5=0 | | 2/3x-2=1/3x+12 | | m+3.5=12.5 | | 3x+4=2x-98 | | 2×10-x=2 | | 2j=10+30j= | | B.5x+12=x;x=28 | | 3x^2-9x+16=178 | | 9x-75=-3 |

Equations solver categories