18-3(2p+4)3p=3(2-3p)

Simple and best practice solution for 18-3(2p+4)3p=3(2-3p) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18-3(2p+4)3p=3(2-3p) equation:



18-3(2p+4)3p=3(2-3p)
We move all terms to the left:
18-3(2p+4)3p-(3(2-3p))=0
We add all the numbers together, and all the variables
-3(2p+4)3p-(3(-3p+2))+18=0
We multiply parentheses
-18p^2-36p-(3(-3p+2))+18=0
We calculate terms in parentheses: -(3(-3p+2)), so:
3(-3p+2)
We multiply parentheses
-9p+6
Back to the equation:
-(-9p+6)
We get rid of parentheses
-18p^2-36p+9p-6+18=0
We add all the numbers together, and all the variables
-18p^2-27p+12=0
a = -18; b = -27; c = +12;
Δ = b2-4ac
Δ = -272-4·(-18)·12
Δ = 1593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1593}=\sqrt{9*177}=\sqrt{9}*\sqrt{177}=3\sqrt{177}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{177}}{2*-18}=\frac{27-3\sqrt{177}}{-36} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{177}}{2*-18}=\frac{27+3\sqrt{177}}{-36} $

See similar equations:

| .8x-5.6=-1.6 | | 32=p+19 | | 9m-17=-23 | | 3/4m-4=-16 | | 3t/8+5/4=2 | | 5(2x-7)+42-3x=2x= | | -12g=10 | | 6(6-6x)=144 | | -4x+2+6x-11=11 | | 14=a+10 | | 4x-11+2x+49=90 | | 11-2x+8x+5=32x= | | 2y=-17+3y | | 5g+12g-5g=10 | | x/2.5-8=-64 | | 7x+1.5=2x+0.3 | | 4x+8=7x-15 | | 7(x+7)-7=13x-6(x+6) | | 4x+108=8x^2 | | a+30+3a-46+a+41+141+59=540 | | 5x+22x+8=(5x+2) | | -7x-27=2x+18 | | 2x-2(6x-4)=15 | | 3x÷4=1/8 | | 7p-6=9p | | 3z-42+4z-19+2z+150+3z+7=540 | | 7x—27=2x+18 | | 12d+4d-2d-4d-7d=18 | | 3x-28-66+x=180 | | 5-x=7+3x-4 | | 37=v+18 | | 1/2x(6-x)+3x=1/2x-8 |

Equations solver categories