If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+32x-4=0
a = 17; b = 32; c = -4;
Δ = b2-4ac
Δ = 322-4·17·(-4)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-36}{2*17}=\frac{-68}{34} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+36}{2*17}=\frac{4}{34} =2/17 $
| 5x+10=17x+74 | | X+y=15-×+y=-15 | | 1/2x-7=188 | | -g-7=17 | | -50+12y-10=0 | | 25x=4,290 | | 13x+130=0 | | x+25=4,290 | | 5=(x+45/6) | | s/(-1)=10 | | c/(-10)=1 | | 8x+76=5x+49 | | 3x-31=10x-101 | | 36=q2 | | -6x+21=-2x+13 | | -7x-34=3x+26 | | -3x16+5x=8 | | -4x-33=4x+39 | | 10x-43=-3 | | -2+y/4=24 | | 1/4y+9=1/4 | | -7+v/4=13 | | 3x+31=-3x-11 | | 9x-37=-2x+7 | | (10x120)/(x-2)=80 | | -6x+32=-7x+37 | | 6x+54=10x+86 | | -3x-1=6x-28 | | 4x-1/2-7=7(1/2x-7) | | 7x+45=10x+60 | | 6x-10=10x+11 | | 5x-5=-2x-12 |