If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+16x-6=0
a = 17; b = 16; c = -6;
Δ = b2-4ac
Δ = 162-4·17·(-6)
Δ = 664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{664}=\sqrt{4*166}=\sqrt{4}*\sqrt{166}=2\sqrt{166}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{166}}{2*17}=\frac{-16-2\sqrt{166}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{166}}{2*17}=\frac{-16+2\sqrt{166}}{34} $
| 3x/4-4x/2=3/8 | | 3x-7-x=-9 | | (x+3)/4-(x-4)2=3/8 | | 14.2t-25=3.8t+26.8 | | -0.6(r+0.20)=1.8 | | 0.05(6−x)+0.1x=0.48 | | l-0.6=77.4 | | 0.22(x+5)=0.2x+4.2 | | -3=-20x-15+21x | | 9w+17=54 | | (.1x-22)°+(.3x-54)°=90° | | 4x+7+2x+9=180 | | 3x+7=−7x−9 | | 0.89=w/6.4+4.3 | | -2y^2-8y-40=0 | | 16-c-12=-3c | | 100/1000=x/500 | | 3.9c-0.95=3.34 | | 11/12=x/24 | | -2y^2-8y+16=56 | | 10/11=x/110 | | 90/6=x/2 | | 21/22=x/44 | | 19/20=x/10 | | 16/17=x/32 | | 2(x+10)(x-4)=48 | | -7(x+2)-5x=x+28 | | 14/5=x/10 | | 630/15=x/2 | | 272/8=x/1 | | 11/6=a+7/9 | | 5^x-2=651 |