17a-7a(a+1)=4(a-2)

Simple and best practice solution for 17a-7a(a+1)=4(a-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17a-7a(a+1)=4(a-2) equation:



17a-7a(a+1)=4(a-2)
We move all terms to the left:
17a-7a(a+1)-(4(a-2))=0
We multiply parentheses
-7a^2+17a-7a-(4(a-2))=0
We calculate terms in parentheses: -(4(a-2)), so:
4(a-2)
We multiply parentheses
4a-8
Back to the equation:
-(4a-8)
We add all the numbers together, and all the variables
-7a^2+10a-(4a-8)=0
We get rid of parentheses
-7a^2+10a-4a+8=0
We add all the numbers together, and all the variables
-7a^2+6a+8=0
a = -7; b = 6; c = +8;
Δ = b2-4ac
Δ = 62-4·(-7)·8
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{65}}{2*-7}=\frac{-6-2\sqrt{65}}{-14} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{65}}{2*-7}=\frac{-6+2\sqrt{65}}{-14} $

See similar equations:

| (x)=x^2-x+1 | | -12=2(3x-7)-5x | | 8a+7=3a+4+5a+2 | | 4-n/3=20 | | -⅔y-¾=5 | | 1246=510x-1,022,834 | | 2(y+6)=4y+12 | | 16x-2x=-4 | | -1+2(4-3p)=-6(p-5) | | 12(2k+11=-60 | | 7(6x-2)=40x | | 3x+17+8x-16=180 | | 2(6x-4)=16x | | {x}{6}+7=11 | | 6x-10+2x+15+2x+15=180 | | 3x+60°=90° | | 10=4n+7 | | x/6=7=11 | | y=518(88)-43,886 | | 5=-4+3b | | 28p+6=118 | | 1x+5=-2x+2 | | 6+3x+45=476 | | 2x+3(5x-7)=47* | | 4x=5(x+6)-5 | | 5–(2x+1)=8x–1 | | -(12+4p)=4(p-5) | | 0.635(x+10)-10=0 | | 25x=8(3x+3) | | x=0.004/0.01x3.2 | | 2z=12+z | | m/9-2/3=7/3 |

Equations solver categories