17/32x+320=X

Simple and best practice solution for 17/32x+320=X equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17/32x+320=X equation:



17/32x+320=x
We move all terms to the left:
17/32x+320-(x)=0
Domain of the equation: 32x!=0
x!=0/32
x!=0
x∈R
We add all the numbers together, and all the variables
-1x+17/32x+320=0
We multiply all the terms by the denominator
-1x*32x+320*32x+17=0
Wy multiply elements
-32x^2+10240x+17=0
a = -32; b = 10240; c = +17;
Δ = b2-4ac
Δ = 102402-4·(-32)·17
Δ = 104859776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{104859776}=\sqrt{64*1638434}=\sqrt{64}*\sqrt{1638434}=8\sqrt{1638434}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10240)-8\sqrt{1638434}}{2*-32}=\frac{-10240-8\sqrt{1638434}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10240)+8\sqrt{1638434}}{2*-32}=\frac{-10240+8\sqrt{1638434}}{-64} $

See similar equations:

| 2/7+3y/4=1/14+5y/8 | | -5(1+5n)=95 | | 13.5(t/60)=10.5(36-t)/60 | | Y=375+-1x | | 8n+27=2n-3 | | Y+-1y=0 | | |x+6|=-2x+9 | | (7x^2+8-3)-(5x-2)= | | 6x+8=19.76 | | X=315+0.6y | | 5(-3+7a)-3=157 | | F(2)=9x^2-4x | | -7x=12x+8 | | 320-5x^2-60x=0 | | -2(7+x)=34 | | 3p-8p-12=8p-3+4 | | -16x^2+40x+240=0 | | 3m/5-2/10=2m/10-4/5 | | -18-(-9)=c | | 5x+28=22 | | 60/n=20/7 | | -16+7n=8+n | | 16=−4(x−1)+416=−4(x−1)+4 | | 3x8+71=180 | | 7+5n-n=19 | | 5n+3n=8n | | 2(3x-)-8=4 | | 11+x/3=-7.75 | | 2.3=-6x+40.7 | | -22=-6m-5m | | y/4-1.1=-13.9 | | 7+x/20.48=15 |

Equations solver categories