17-3(2x-7)=7x-3)2x-1)

Simple and best practice solution for 17-3(2x-7)=7x-3)2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17-3(2x-7)=7x-3)2x-1) equation:



17-3(2x-7)=7x-3)2x-1)
We move all terms to the left:
17-3(2x-7)-(7x-3)2x-1))=0
We add all the numbers together, and all the variables
-3(2x-7)-(7x-3)2x=0
We multiply parentheses
-14x^2-6x+6x+21=0
We add all the numbers together, and all the variables
-14x^2+21=0
a = -14; b = 0; c = +21;
Δ = b2-4ac
Δ = 02-4·(-14)·21
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{6}}{2*-14}=\frac{0-14\sqrt{6}}{-28} =-\frac{14\sqrt{6}}{-28} =-\frac{\sqrt{6}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{6}}{2*-14}=\frac{0+14\sqrt{6}}{-28} =\frac{14\sqrt{6}}{-28} =\frac{\sqrt{6}}{-2} $

See similar equations:

| 3x+45+63+7x-7=180 | | (4-3X)-(X+5)=y | | 5(y-3)+12=64 | | 4x+24+47+39=180 | | 2-2x=x-7 | | 3x+45+63=7x-7 | | 3x+45+7x-7=63 | | 4x+24+39+47=180 | | -2.5m-11=-7.5 | | 9.06x+3.55(9x-5)=12.03x+.5616 | | 45/6+w+23/4=12 | | (2u-1)(5u+1)=0 | | n+8=24;n=8 | | r+9=r+16-7 | | (4-2x)(6-2x)x=0 | | 2.6k=12.74 | | 5y/6-7=6-3y/2 | | -21/2m-11=-71/2 | | 15w-21=-8.6 | | 6x-9=16x^2-8x-24 | | 600t=800(3/4) | | 5x=4^x+3 | | 5y-27-4y=9 | | 3x+12=24,×= | | 5y=27=4y=9 | | 7t=3.5 | | 4x+66+78=180 | | -6(10x+8)=612 | | 3x-20+50=90 | | 7t=4.5 | | (3x^2-38x-8)=0 | | 40.77-(y/5)-2.4*y-(y/10)=0 |

Equations solver categories