If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+12y-10=0
a = 16; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·16·(-10)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-28}{2*16}=\frac{-40}{32} =-1+1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+28}{2*16}=\frac{16}{32} =1/2 $
| 3a+10–(a–7)= | | 0=6x-+8-5x+8 | | 797=4j−3 | | -20x+30=6x-50 | | 12p=3/4 | | 9=4r−7 | | 3/4j=19 | | 4/6n=9/10 | | 5x-8°+4x-1°=180 | | P(x)=60x-0.4x^2-3x+14 | | 9x-7+7x+19=180 | | 6x+10=6x+.2(x-7.8)+1 | | Y+16+7x+19=180 | | 2*n=n+30 | | 3g−1=11 | | 3g−1=118 | | 2y+17-4=180 | | x/6+1=8-x/6 | | (9x+1)=(11x–23) | | 5x+2+6x+4=12x14 | | 9x+1=11x–23 | | 13=5x^2-35x+73 | | 70x^2-73.5x-294=0 | | 3(x+12)=66 | | 1.60=2x | | )-15x+2=-15x+2 | | 2y+17=7-3 | | 11+5/17=13x-25 | | 16z-4=3z+6-2 | | 5*y+9=4*y+12 | | -18=u/2-8 | | (5x+0.2)+(9-0.5x)+(6x-0.6)=(5x+1.1)(7x-0.3)+(8.5-2x) |