If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=8
We move all terms to the left:
16x^2-(8)=0
a = 16; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·16·(-8)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*16}=\frac{0-16\sqrt{2}}{32} =-\frac{16\sqrt{2}}{32} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*16}=\frac{0+16\sqrt{2}}{32} =\frac{16\sqrt{2}}{32} =\frac{\sqrt{2}}{2} $
| 5x2=8 | | 3^(x+1)=14 | | 3^x+1=14 | | 2t+10=12/t | | 100=42u | | X2+100x-5600=0 | | 3r-3/r^2+6r-7+2/r+7=1/r-1 | | 9^x-90*3^x+729=0 | | 5/6(4x+8)=3/8x-1/4 | | 2x+4=-2(1/2-×) | | 7y-6y+12=4y | | 4x-(5-2x/5)=3 | | 4x-5-2x/5=3 | | 24+x•4x=180 | | 2x-175=0 | | 10+1^5=x | | 25x-35x^2=0 | | 5(x+1)+3=23 | | 2x+54=-8x-4(-5x+2) | | -2x-3+5×=4(2×1) | | (5-2x)(x+7)=0 | | (4D^2-8D^3-7D^2+11D+6)y=0 | | -4(x-3=-3(2x1 | | 3x(=x+8) | | 4(x+1=7(x+1)=8 | | 13/4=6x+4 | | 5(2a-9)=30 | | 13/4=-6x | | (4x+13)+(5x-22)=180 | | L4(4x-4)=2 | | 5x+15+2x=-24+4x | | 3x4-8x3+16=0 |