If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=4
We move all terms to the left:
16x^2-(4)=0
a = 16; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·16·(-4)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*16}=\frac{-16}{32} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*16}=\frac{16}{32} =1/2 $
| -2s=-1-s | | 5.5=x-12.25 | | -6-4d=(-10d) | | x-9.3=1.56 | | 5b+10b−-20=5 | | 9r=9+6r | | x2−5x+6=20 | | -17+2(6x-1)=5 | | 65-x=27 | | 3t-t+2t-4t+2t=16 | | 16x+14=90 | | -17a+(-10a)-(-8a)-(-12a)-(-18a)+(-10)=12 | | .9+3.5g=11-0.5g | | u4+ 2=5 | | 12=n/4+11 | | -7h-(-5h)-(-17h)+9h-8=16 | | 3/5×15=p | | -2/7+w=2/3 | | -7s+-8s-(-19s)-8=(-16) | | -4=14-x | | -2/3=2/7w-1/2 | | y/1.4=10 | | -16b+11b+(-14)=11 | | X=9y+-77/4 | | y=-6(15)+15 | | 10+-4d=14 | | 8v-v+(-16)=12 | | 3x—3=5x+17 | | y/0.03=320 | | 13b+2b-13b-b=19 | | 3m=(4m-6)/2 | | 13r-5r+2=8 |