If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-9x=0
a = 16; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·16·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*16}=\frac{0}{32} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*16}=\frac{18}{32} =9/16 $
| 3g-12=96 | | 2(x+3)=-4(x-6) | | 1/4p+48=8 | | 7y+16=11y | | c-(-4.95)=6.95 | | 5(x-1)=3(x+1)-2 | | 7(-9x+10)=70-63 | | (n÷-1.6)+7.9=8.4 | | 8×5(3q-4)=7(q-12) | | 6-9b=-10b | | 2x^2+64=100 | | w/16=-26 | | (-5)b-1=59 | | k-494=3 | | j+126=613 | | –3x+3=–15+6x | | -175=c+684 | | 9x+(x+6)*2-4(3-2x)*20x=20 | | 2x+10=425-x | | q-680=-186 | | 270-47y=39 | | y-75=-29 | | z-20=2 | | (+0.4x)*10)+1-(4(+3x+9=0 | | -6n=30+3(n–4) | | v-(-29)=43 | | 3.2=9.5-0.7x | | 6n=30+3(n–4)- | | v-(-29)=47 | | 7x^2+8=15x | | -1/5x+3=8 | | 8=(-7)x+1 |