If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-64x-246=0
a = 16; b = -64; c = -246;
Δ = b2-4ac
Δ = -642-4·16·(-246)
Δ = 19840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19840}=\sqrt{64*310}=\sqrt{64}*\sqrt{310}=8\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{310}}{2*16}=\frac{64-8\sqrt{310}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{310}}{2*16}=\frac{64+8\sqrt{310}}{32} $
| 2+5x/7=5/4 | | 75=5u+10 | | 5k^2+22k-48=0 | | 3(x-4)=2(3x+4) | | 606940/x=565904 | | 4+16x+24+6=18x+5+7 | | 4+16x+24+6=18x+5+5 | | 60+120+8x+11+10x=360 | | 8+(8x-9)(10x+7)=0 | | 25x+20-5=30x+35 | | 110+70+70+x=360 | | 110+70+70+x=8 | | 120+70+x+110=360 | | 295+x=360 | | ((2+1/2)/3+1)/(2+1/(3+1/2))=x | | 11x-1=7(x-3)+4x+20 | | (X-1)-(1-x)=2(x-1)-4(1-x) | | 10x+40(0.90x)+30(0.80x)=525 | | 6t÷5=8+t | | d^2d-8=0 | | 2z-5(2-1)=3z+1 | | x+37=x+67+90=180 | | z+136+30=180 | | (5x+16)=(13x-7) | | 3x+4(x-1)=5/2 | | 3a-15=a+45+a=180 | | 50=2.5/x | | 3=1.2x | | (x+3)(4x-5)=(2x-3)(2x+3) | | 2x-3=64x | | x+23=-46 | | 43x+6x-28=0 |