If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-56x=49=0
We move all terms to the left:
16x^2-56x-(49)=0
a = 16; b = -56; c = -49;
Δ = b2-4ac
Δ = -562-4·16·(-49)
Δ = 6272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6272}=\sqrt{3136*2}=\sqrt{3136}*\sqrt{2}=56\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-56\sqrt{2}}{2*16}=\frac{56-56\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+56\sqrt{2}}{2*16}=\frac{56+56\sqrt{2}}{32} $
| 8+(x-3)=-2 | | 7-2x=1.5 | | 3p+7(6-6p)=9(9-2p)-8p | | 14x=10+9x | | 3a=3a+18 | | t/4+1=2 | | 3x/(x-2)+(1/x)=4 | | 8+2x+8=13+x | | 684=z+359 | | 3-p+7p=-21 | | c-656=257 | | ((4x-1)+x+18)/2=42 | | n+389=483 | | 1-5x+8=24 | | 5x-7-7+12=39 | | (7x+28)+(5x+22)=180 | | 7s+17=3 | | k+12/3=10 | | 2=7+2p+7 | | 28=x/5+7 | | -6-8k=-6(1+7k) | | t-87=-67 | | 2x2−5x−12=0 | | 3x+5+7=48 | | 8=2n+4n | | -2+10c=18 | | 11+14u=-17 | | 19=j-68 | | 9(f+1)=72 | | 6-(7x+4)-12x=4x=17 | | 2x-5+2x-5=14 | | d/4+8=6 |