If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-4=0
a = 16; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·16·(-4)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*16}=\frac{-16}{32} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*16}=\frac{16}{32} =1/2 $
| 1/6(x=6)=11 | | 3x^2+52=100 | | 36=x40 | | 8x+8/4²=4 | | 11v-2v=3-4v | | 5p1=9+3(p6) | | 4x^2+30x+50=54 | | 4x+60=14(x60) | | A(x)=10x+50+B(x)=8x+15 | | A(x)=10x+50B(x)=8x+15 | | 6x8=x+7 | | 2n^2-4n=5 | | -3x-6=2x-6 | | Y=10x-4x2 | | –2(j−9)=2 | | -10x-2=26 | | –4y=–64. | | -2x+4=13 | | -5x+3=-24 | | (6x+1)29=180 | | -10x-4=36 | | 5=(x÷250)x100 | | 5=(x÷250)x00 | | 3/5x+60=200 | | -3x-10=1 | | 5^(3x+4)=217 | | 5^3x+4=217 | | xx6+xx4=54 | | 16^(3x)=8 | | -2x+12=-4x+20 | | 6x+22=3x+28 | | x+10=-4x+60 |