If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-26x-10=0
a = 16; b = -26; c = -10;
Δ = b2-4ac
Δ = -262-4·16·(-10)
Δ = 1316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1316}=\sqrt{4*329}=\sqrt{4}*\sqrt{329}=2\sqrt{329}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{329}}{2*16}=\frac{26-2\sqrt{329}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{329}}{2*16}=\frac{26+2\sqrt{329}}{32} $
| 10x+12-x=11x | | -5(3x-7)=2(x-1)-31 | | 1/4(x-74)=19+4x | | 32+2x=3(-x+6)-21 | | 1+m^2+5m=-1 | | ×2+4×+2a=0 | | 3/4-7/4=s/8+3/4 | | x-2x+3x=30 | | X-5+8x-40+3x+24=180 | | 6x-25+3x+18+2x=180 | | 6+2p-4=7p+20-2p | | 2x-22+5x-44+3x=180 | | 4z-22=-31+z | | 3+2x=3(-x+3)-21 | | 3x-5+2x+25+x=180 | | 72x-6^2=216 | | x4-8x2-32x-68=0 | | 2x-15+3x+x=180 | | 3x+2x-15=180 | | 5/7(y)-1/14(y)=1 | | x-2x+1x-1+1-9=0 | | 27/(-x)+3=-6 | | (x-1)-(2x-1)=9-x | | 1¹/²-3x/4=0 | | 6x+1=13-8x | | 6b+5=4b+28 | | 15+4c=25 | | 12v+12=48 | | 4,20+5x=8,50 | | 0.5x+8=3x-4 | | y+15=19 | | H=5+112t+-16t^2 |