If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-24x-141=0
a = 16; b = -24; c = -141;
Δ = b2-4ac
Δ = -242-4·16·(-141)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-40\sqrt{6}}{2*16}=\frac{24-40\sqrt{6}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+40\sqrt{6}}{2*16}=\frac{24+40\sqrt{6}}{32} $
| 2k-9-k=4K+6-3k | | -2=x-8/4 | | 3x+2x+10+4x-1=180 | | (w+10)2=20 | | 10m-5=3m+23 | | p-4=-24 | | 7x-2(3.4x)=19 | | |3x+20|=4 | | 6n-7=5n+4 | | 0.75z-18.50=0.65 | | 3a=5=11 | | -2x+5+3x=4x-6+2 | | -13c+4+2c=9c–16 | | -4(2x+3)-10x=14(x-8)+3x | | 15+4y=5y | | 2(x-4)=38 | | -7m+8=71 | | 4x+3x=83 | | 6n-20=5n+11 | | -5(y+7)=20 | | (4x+9)/(9x-8)=0 | | 6t+1=-7 | | Y=2m-5(-2) | | 2(4w+.4)+2w=5.2 | | 1x-3=5x-6 | | 3(4d+2)=8d+18 | | 2.5x+0.6x=-9.3 | | 3x-1=6x-5 | | W=6v | | 7-3x=55 | | 4x2-28x+27=0 | | 2+7y=44. |