If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+8x=0
a = 16; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·16·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*16}=\frac{-16}{32} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*16}=\frac{0}{32} =0 $
| -3(1+6v)=8v-29 | | 5=15w | | 2.3x5.8= | | 3x-4+4x=7x-2 | | 12k+k-5=16 | | 368=22j | | 36=9y | | 2d=732 | | ((2x-3)×6)=294 | | 1/10x+1/4=5/4 | | 18-6x=-8(3-x) | | 7t+12=68 | | 1/4(4x+24)=13 | | –6+4f=3f | | 6+5x=x+5 | | -28-2x=-58 | | 841=29k | | 24=12j | | 2x^2+4x–96=0 | | -18g+3g-2g+12g=11 | | 4p+7(1-7p)=187 | | 2x2+4x–96=0 | | f−55=42 | | -2n+21/6=1/3 | | x=90+(2x+21)=180 | | n+40-n=89 | | x=4x+3x+90 | | -7c-7(1-6c)=-217 | | 29u=464 | | 11-4q=-5 | | r/2-12=15 | | 0.41(3x-1)+0.75(x+1)=4 |