If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t=9+4t^2
We move all terms to the left:
16t-(9+4t^2)=0
We get rid of parentheses
-4t^2+16t-9=0
a = -4; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·(-4)·(-9)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{7}}{2*-4}=\frac{-16-4\sqrt{7}}{-8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{7}}{2*-4}=\frac{-16+4\sqrt{7}}{-8} $
| 35-9h=-4(5h+3) | | 60=6(6–2n) | | 6=-3(k+2) | | 4y-4=12-4y+4 | | x²=121 | | (3x+5)=(5x+2) | | 42/7=2+t | | -7/4x=4 | | (3×6÷2)v+10=3²v+9 | | w/5-13=19 | | 2y+18-5y+4y=28-3y=28-3y+14 | | X/3+(x-2)/5=6 | | 36=x/2+10 | | (4x+1)+83=180 | | (2x+5)(6x−1)=120 | | -4/y-8=8 | | 4x+8=15x-9 | | 3x+48=1x | | 7x+19=6x-8 | | (3×5)t+(21-12)=15t+3² | | 19-7/4x=12 | | 10(k+3)-(-9k-4)=k-5+3 | | 2=1/x-1 | | x/4-1/4=-6 | | 18x+3=-12x-3 | | -6x+8+4x=-2x+13 | | 3x-5+2-6x=-3 | | 9h=15=93 | | -23=1-4x+8 | | -2x+8-5x=57 | | 13(x-15)-11(x-9)=0 | | 5x+5=5/4 |