If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+235t-151=0
a = 16; b = 235; c = -151;
Δ = b2-4ac
Δ = 2352-4·16·(-151)
Δ = 64889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(235)-\sqrt{64889}}{2*16}=\frac{-235-\sqrt{64889}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(235)+\sqrt{64889}}{2*16}=\frac{-235+\sqrt{64889}}{32} $
| 2x-5+10x=85 | | -6x-5=-5x+6 | | 7(-3x+5)=49 | | 7+6t=5t | | 10+6.4n=7+6.9n | | 11z-3=-3-127 | | -8v+3=2v-17 | | 7-5w=-39 | | 3-12p=27 | | -4(x=5)=-5(x-4) | | 4r-7=27 | | −1+x+5=−1 | | 8(1+2x)+4x=-168 | | (x+2x+5)=180 | | (y-5)+6=9 | | -3w-6=21, | | 2+3x+62=108 | | 16-4v=32 | | 3p-5=120 | | −0.77+0.52r=−1.2016 | | 6b+1=8b+9 | | 3x+7-2=17 | | 127+83=(9x-10) | | 8x+5=-1+6x | | 3x+18+93=108 | | 7x-2=9x=5-2x | | 25=10x+50 | | 5(g+8)-7=117-g | | 24+3x-4=84 | | 6v=9+3v | | 4(3x-6)=-168 | | -8r+3=6r+11 |