If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+111t=0
a = 16; b = 111; c = 0;
Δ = b2-4ac
Δ = 1112-4·16·0
Δ = 12321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12321}=111$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(111)-111}{2*16}=\frac{-222}{32} =-6+15/16 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(111)+111}{2*16}=\frac{0}{32} =0 $
| −6.5x+0.44=−2.16 | | 8.50d=68.00 | | 2w-2w+5w+w=12 | | 6*o2=4*0 | | 27-30x=-63 | | $8.50d=68.00 | | 9x-21=8x-7 | | 6x-2-3x=4-9 | | 37=5b-3 | | (010)(0.5)+0.35g=0.15(g+0.5) | | 2(5y-`1)=28 | | -5(h+12)=h-8 | | -12+f/11=-3 | | h-6/3=1 | | 21y+1=180 | | 5r-3r+3r+2r-5r=8 | | 21y+1+y=180 | | 90=x+42(2x+1) | | g-0=g+1 | | z+4/2=3 | | 5x-14=-23 | | (3x-1)+(2x+11)+(3x-1)=180 | | 0.05x+0.10(x+6)=1.65 | | y/25=30 | | 2^p=128 | | -90=6-12x | | c=3.14*2^2 | | 5-x=2x-3 | | 6+7n=-71 | | 5y+23=7y+1 | | 648*42=x | | 7x+11+4x+4=180 |