If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t-40/t=26
We move all terms to the left:
16t-40/t-(26)=0
Domain of the equation: t!=0We multiply all the terms by the denominator
t∈R
16t*t-26*t-40=0
We add all the numbers together, and all the variables
-26t+16t*t-40=0
Wy multiply elements
16t^2-26t-40=0
a = 16; b = -26; c = -40;
Δ = b2-4ac
Δ = -262-4·16·(-40)
Δ = 3236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3236}=\sqrt{4*809}=\sqrt{4}*\sqrt{809}=2\sqrt{809}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{809}}{2*16}=\frac{26-2\sqrt{809}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{809}}{2*16}=\frac{26+2\sqrt{809}}{32} $
| x2−10x+45=4x | | 3.88x+64=15.0544+8x | | 4(x-1)+13=5x+2x | | (4+8)+6=(6+4)+n | | 45+2939439259959+59595+3479201283743829=y | | d+6/5=2 | | -8t+9=-10−10t+3 | | 8s=6s-6 | | 32x=4(200+x) | | t-(-2.4)=-10.8 | | (4x+6)+(5x-1)=180 | | 3g+3=4g+9 | | -126-2v=-10v+2 | | 4(x-1)+6=5x-7+2x | | 6+8q=10q | | 231-2x=20x+11 | | z-(-7)=-11 | | -9m=-8-8m | | 54-8k=6k+12 | | -1.4x=8(x+2.19) | | 6r+19=187-15r | | -28=-4(x+9) | | (7x-4)=(9x-42)=180 | | 4v+3=43-v | | -2t+2=-t-8-3t | | 4x-4+6=5x-7+2x | | 8.92x+49=79.5664+7x | | y=0/0 | | 4x-4+6=5x-7+3x | | 2(x-19)=20 | | 9f-1=10f-10 | | 2x+2+(−3)=5x+8 |