If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t(8-1t)=0
We add all the numbers together, and all the variables
16t(-1t+8)=0
We multiply parentheses
-16t^2+128t=0
a = -16; b = 128; c = 0;
Δ = b2-4ac
Δ = 1282-4·(-16)·0
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-128}{2*-16}=\frac{-256}{-32} =+8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+128}{2*-16}=\frac{0}{-32} =0 $
| M+3(m)=22 | | 13-5y=-2 | | x-5(-1)=-2 | | x4-7=3 | | 9(p-4=-8 | | 5.3x=15.3 | | -9(-7x+2)+9(4x+8)=-441 | | 5s2+11=56 | | S=-5d+80 | | 35+52+(3x+2)=180 | | -(14+3x)+2=1.25-15(10x-35) | | -5y=8=-7 | | m+8.9=-4.3 | | (2g)+(9g)=110 | | D=-12t+65.7 | | Y=3(x+2)^2-27 | | (r-6)+(5r)+(3r-3)=180 | | 0=2x+-13 | | 3a+7a=-10 | | 24-8m=-4(6m+6) | | -66x/6=-33 | | 1+3x=9+5x | | 84=-p+8(-1+3p) | | 9x+4+(4x+1)=83 | | 0.9x+1.6-4x+14=x | | 40=2t+20 | | x+3(8)=12 | | 0=9x^2-22x-32 | | 7x-10=6x-5=180 | | 5x^2+3x-14=-1/3x+4 | | 21x+49= | | 56x/8=28 |