If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+40t+5=0
a = 16; b = 40; c = +5;
Δ = b2-4ac
Δ = 402-4·16·5
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-16\sqrt{5}}{2*16}=\frac{-40-16\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+16\sqrt{5}}{2*16}=\frac{-40+16\sqrt{5}}{32} $
| -15+w=-w+19 | | 9(x-6)=2x-4.3 | | 35+24n=395 | | 2*6.36^2+8y=121.5 | | -3(d+3)=-15 | | (x(1.006875))=50 | | 8x-14=-38 | | 5(x+4)^2−9=11 | | 2*16^2+8y=121.5 | | 19u=17+20u | | x+3=7x+4 | | x+(x(1.006875))=50 | | 0=(-3)(0)+b | | 4(x-8)+20=2(×-5)×= | | 2*7^2+8y=121.5 | | 6-q=10 | | 24=19+5x | | 2(3a-1)^2+(3a-1)-3=0 | | x=-42+4x | | 9x^2-24x+16=-5 | | 2x^2=0+3 | | 2*9^2+8y=121.5 | | u+3/5=5/6 | | 20+2y-4=y | | 20+2y+4=y | | 15x+1=2x-25 | | n-75=120 | | x²+4=8x²+3x+3x(-2x-1) | | 2(3a−1)2+(3a−1)−3=02(3a-1)2+(3a-1)-3=0 | | 2x+13=-17 | | 17+3t=4t | | 7^2-8y=121.5 |