If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16c^2=49
We move all terms to the left:
16c^2-(49)=0
a = 16; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·16·(-49)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*16}=\frac{-56}{32} =-1+3/4 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*16}=\frac{56}{32} =1+3/4 $
| 3(-3x+2)-5x=76 | | m|6-23=109 | | 15x-4=3(5x+4) | | (x+0.75)(x+5)=0 | | 9(x-4)+7=4x+5(-5+x) | | -9.76d-(-12.81d)=8.54 | | 560=-1.678x^2+39.347x+338.954 | | -23=-4(x+1)+7(x-6) | | 24x-27=3(6x-7)+6x-6 | | -17-3t=7+16+5t | | (x=2)8 | | -23=-4(x+1)+7(x+6) | | 12=g–56 | | -13k+16k+9=-k-15 | | -13k+16k+9=-k−15-13k+16k+9=-k-15 | | 68x+3082x-48=63(50x+87) | | 5(5x-5)=10(13+2x) | | 12p+4=4 | | 5(5x+5)=10(13-2x) | | 5+65x=39x-13 | | -13k+16k+9=-k−15 | | 7x-9+4x+22=91 | | 3a+64=7a-4 | | 30h-10.5=38 | | -7q-11q+17=15-18q | | b+9/7=14 | | 13+2x=-52+17x | | 5(5x+5)=10(13+2x) | | –5=m+11 | | 2(4x+5)=11x+6-3x+4 | | x=45/3x=15 | | 13/24=-5/16+c |