If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16b^2=64
We move all terms to the left:
16b^2-(64)=0
a = 16; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·16·(-64)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*16}=\frac{-64}{32} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*16}=\frac{64}{32} =2 $
| 0=-11x^2+1430x-39600 | | √5x2+11=x+5 | | 2p-16=-23+p | | -5n+250=0 | | -2h-8=2h | | 4(6+4k)=-88 | | 16v2=64 | | 38d+48=368 | | 2x²-9=39 | | 4+6s-1=9s+30-6s | | c+10=-3c-10 | | 3x=4x-87 | | 5(g+8)−7=117−g | | 7x+16=15x+8 | | 4p^2-3=-19 | | 3y-10+y+44=5y+40-3y | | 8x-10+3x-90=180 | | x+1*3=2x+8 | | 3/6x=66 | | x/2=6=50 | | -(3x-4)+9x=10-7x | | f/11-12=10 | | 2(3x+5)=10x+2-4x+8 | | 7(2e-1)-3=6+7e | | 9.76d(12.81d)=8.54 | | x^2-3x+2.5=(x-3)^2+0.5(x-18) | | 140x-112=14(10x-8) | | 3x-8=3(x-4)+ | | 10x+35x-8=9(5x+9) | | -3w+11=-8w | | 15+x/2=13 | | 6y-5+5y+35=y |